Wednesday, November 2, 2011

Parallel Lines (Flat and Curved Surfaces)

Chapter 6 is about Parallel Lines. Chapter 16 is about non-Euclidean surfaces (ie curved surfaces) and what what happens to parallel lines if the surface isn't flat (Euclidean). We will be putting them together to compare and contrast the uber-important, as yet unproven, Parallel Lines Postulate.

10/28   Ch 6 Lesson 1: The perpendicular bisector
                        HW p.215-216/18-29, 33-37, 42-45
11/02   Ch 6 Lesson 2: Proving Lines Parallel and Lesson 3: Constructing Parallel Lines
                        HW p.222-224/7-40
11/03   Ch 16 Lessons 1 and 2: Saccheri Quadrilaterals Day 1
                        HW p.227-229/19-28, 42-47 and p.694/31-40, 44-46 and p.698-700/7-13, 42-48
11/04   Ch 6 Lesson 4: Parallel Lines and Angles
                        HW read p.230-231, do p.232-235/5-7, Set 2

11/08   Ch 16 Lesson 2: Saccheri Quadrilaterals Day 2
                        HW p.699-701/14-35, Set 3
11/09   Ch 6 Lesson 5: Triangle Angle Sum and Lesson 6: AAS and HL
                        HW p.240-241/31-46, Set 3 and p.247/31-50
11/10   Ch 16 Lesson 3: Lobachebsky and Riemann
                        HW p.704-706/Sets 1, 2, and 3
11/11   Veterans' Day - no school

11/15   Ch 16 Lesson 4: Revisiting the Triangle Angle Sum
                        HW p.709-712/Set 1 (must do!), Set 2 problems 21-32
11/16   Summary of Euclidean and Non-Euclidean Geometry
                        HW finish "neutral geometry" proofs in handout
11/17   Euclidean Problems from other textbooks
                        HW finish handout
11/18   Review Ch 6 and Ch 16: Extra Proofs
                        HW read p.249 and p.713, do p.252-254/25-55 and p.714-715/1-35

11/22   Test of Parallel Lines and non-Euclidean geometry

No comments:

Post a Comment